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NONLINEAR AMGE WITH COARSENING AWAY FROM THE
CONTACT BOUNDARY FOR THE SIGNORINI’'S PROBLEM

ANA H. IONTCHEVA AND PANAYOT S. VASSILEVSKI

ABSTRACT. The finite element discretization of the Signorini’s problem leads to
inequality constrained minimization problem. In this paper we present a nonlinear
element based algebraic multigrid method with a special coarsening away from the
contact boundary for the solution of this problem. As a smoothing procedure we
use the Projected Gauss—Seidel algorithm and for the coarse grid solver-a modifi-
cation of the Dostal’s algorithm ([2]). The performance of the resulting method is
illustrated by numerical experiments.

1. INTRODUCTION

This paper deals with a standard FAS-type multigrid algorithm for solving a con-
strained minimization problem that arises in the finite element discretization of a
contact problem. The resulting fine—grid problem can be large and conventional al-
gorithms do not usually converge fast. In the literature one can find a variety of
methods developed for the solution of the Signorini’s problem. Dual methods [3], 7]
are based on reformulation of the constrained minimization problem into a saddle
point problem using Lagrange multipliers. Penalty methods [1], [3], [7] define a func-
tional, which depends on a penalty parameter and an unconstrained minimization
problem is solved which is an approximation to the problem of interest. Projection
methods suffer from slow convergence rates, so an efficient preconditioning is needed.
Typically they lead to an inner—outer schemes in order to (approximately) evaluate
the projection |9]. Active set strategies [2], [4], [5] alternate between approximating
the contact set and solving a linear problem with fixed contact set. Monotone multi-
grid methods [8] successively minimize the functional of total energy in direction
of suitably chosen subspaces. Our approach can be viewed as a monotone multi-
grid scheme using algebraically constructed coarse spaces. More specifically, in the
present paper, we present a full approximation scheme (FAS) with interpolation op-
erators constructed algebraically following the algorithm in [6]. The difference here
is that a special coarsening away from the initial guess of the contact boundary is
adopted. The main advantage of this coarsening is that on all levels the nodes on
the contact boundary remain unchanged, thus avoiding the problems of violating the
inpenetrability condition by applying the interpolation operators. Another advantage
is that by construction the mesh along the contact boundary on all levels is fine (and
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coarsened gradually away from it) which increases the accuracy of the solution in the
region producing the largest error.

The remainder of the paper is organized as follows. First we review the two al-
gorithms that will be used in the FAS algorithm as a smoother and as a solver of
the coarsest level. The smoothing procedure is the Projected Gauss-Seidel and the
coarsest grid solver is the Dostal’s algorithm. A monotone subspace minimization
algorithm is presented in the next section. The specific element agglomeration coars-
ening procedure is discussed in Section 4. The FAS algorithm is summarized in
Section 5. Finally, numerical experiments for a model 2-d Signorini’s problem are
presented.

2. CONSTRAINED MINIMIZATION PROBLEMS

In the present paper we consider the following model constrained minimization
problem

(2.1) J(v) = % v Av — b"v — min,

subject to the inequality constraints
niv; < g; forall i € Xg.

Here ¥ and Y, ¥ C ¥ are given sets of indices and n and g are given vectors
defined for indices from . Typically n; = 1, or n; = —1.

We describe two algorithms for generating vectors v minimizing the functional
J(v).

2.1. Projected Gauss-Seidel. Consider the functional J(v). For every single com-
ponent v; it is simply a scalar quadratic function J(v) = J(v;), if we fix all the values
of the unknown vector at all degrees of freedom except the ith. If i € ¥ then we
have the constraint n;v; < g;. Assume for example that n;, = 1. Thus we obtain a
problem of finding the minimum of a second order polynomial subject to a a simple
inequality constraint, that is, with x = v;, and a > 0, we have to solve

az? 4+ bxr + ¢ — min
subject to x < d.

The solution is z = —% if —% <d, or x = d otherwise.
This method used iteratively is referred to as the Projected Gauss-Seidel. One can
also develop block—versions of this method (see [3]).

2.2. Dostal’s algorithm. Dostal’s algorithm is presented in [2]. It falls in the cate-
gory of active set strategies. Depending on a parameter I' > 0, one alternates between
searching for the contact set and solving the unconstrained minimization problem. It
was developed for scalar minimization problems with box constraints. Let K be the
set, of admissible vectors, satisfying the constraints {n;v; < g;, for alli € Xc}. We
will use the notation v;, for the ith component of v.
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Define r(v) = b — Av, A(v) C X¢, the set of all indices for which the constraints
are satisfied as equalities, called active index set. The free index set is then defined
as F(v) =X\ A(v).

Define also for v € K:

ri(v) , 1€ F(v
o= {2

(V) = 0 , 1€ F(v)
Bi(v) { min(r;(v),0) , i€ A(v)
v(v) = ¢(v) + B(v) - projected gradient

@(v) - error in F(v)
B(v) - error in A(v)

To reduce ¢(v) — one solves Av = b restricted to F(v)
To reduce B(v) — one removes indices from A(v).

For the decomposition R = F(v) , S = A(v) of the set of indices X, we can
partition and rearrange any matrix D and any vector d in the following way

Dgrr Drgs dr
D - d =
oo ] a=[d]

The projection operator Pk on the set of admissible vectors K is defined as:

[ yifyeK o o y; ifi ¢ Yo
PKy_{ qify¢ K’ and g = (¢;), where q,—{ gi/n; ifi € X¢

Proposition. v — solution < v € K, v(v) =0, i.e., o(v)=p3(v)=0.
The detailed algorithm is presented net.
ALGORITHM (PROPORTIONING WITH CONJUGATE GRADIENTS)Z

The algorithm generates sequence of iterates v, m > 0.
Let m=0,and v € K, § >0, [' > 0 be given.
while ||v(v™)|| > 0

if ||B(v™)||, > T [le(v™)|| (Disproportional v™. Proportioning.)

o i B )
Vi =Tt anS(VT) , am = mind g s e, |

r=r+ a,Aj(v™)
m=m+1
end if



4 ANA H. IONTCHEVA AND PANAYOT S. VASSILEVSKI

if ||B(v™)]|, < T |l¢(v™)] (Proportional v™.)

{Initialization of the conjugate gradient loop.}

(1) y=v™, R=F(v™) —indexset, p=rg,a=0, acg =0
while ||v(y)|| > € and a = acg and ||B(v™)||, < T |le(v™)]]

oo

{Set steplength.}
t

(2) ace = pEIX{;:pR

ify+acgp € K

(a) @ = acg

else

(b) Choose « so that J(Pk(y + ap)) < J(v™) and A(v™) C A(Pk(y + ap))
end if

{Conjugate gradient update}
() y=y+ap
r=r+ aAp
8= rl, ARRPR
~ pLARRPR
Pr =Tg — (Pr
end while

(4) v = Px(y)
r=b— Av™t!
m=m-++1

end if

There are several strategies to choose « in Step 2 b.

(1) Feasible strategy:

a={max{u : y+ up € K}ify € Kelse0} = f,(y,p)

(2) Monotone strategy:

o = { (676l if J(PK(y + Ofccp) S J(PK(y))
fs(y,p) else

(3) As long as possible strategy:

o= { (676!e] if J(PK(y + Ofcgp)) S J(Vm)
fs(y.p) else
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3. A SUBSPACE MINIMIZATION METHOD

In this section we outline our monotone scheme in general terms.
We consider the following constrained minimization problem:

J(v) = % (Av, v) — (b, v) — min,

subject to the linear inequalities
niv; < g;, foralli e Xe.

Here ¥ and X, ¥¢ C X are given sets of indices; n and g are given vectors defined
for indices from Y. Typically, n; =1, or n; = —1.

We consider the following algorithm for solving the above constrained minimization
problem.
Let Vg, be a subspace of V which has all degrees of freedom associated with s and
perhaps others. Let V; be another subspace of V such that for any v° € V,, v; =0
for 1 € ¥¢. One has Vy, + Vo C V. Note that the decomposition does not have to
be direct and it, in general, may only be a proper subset of V.

Let Ay be the restriction of A to the subspace Vy. That is, Ay = I Al for a
rectangular matrix I,. Finally let M, ' be an approximate inverse (preconditioner)
to Ag such that

(3.1) My + MJ — Ay
be symmetric positive semi—definite.

Algorithm 3.1 (Subspace minimization). Given an iterate v"~', compute the net
iterate v* = vl 4+ y0 4y ¥ y0 = [o(Mo) 7 T (£ — Ay>*) such that y** € Vs,
solves the minimization problem

Jx., (yz*) = J(Vm_l + IO(MO)_IIOTI‘m_l + Eoyz*) — min .

Here, Ey is the subspace iteration matriz I — Iy(My)~'IT A. Note that the constraints
do not involve y° (since it vanishes on X, ). Therefore the constrained minimization
problem only affects y>* in the sense that we must satisfy

> m—1 m—1
ny; " < g = gi — Ny

The following expression for the functional is obtained,
Jo.(y) = J(v™h) — (Mo — 2Ag) My ' IT ™!, My ' Ijr™ 1)
+5(E AByy™, y™) — (B§ Egx™=t, ™).
It is clear that if one optimizes with respect to y>* and defines v = v™~! 4y +y§gt
then
J(v™) < J(v™.

The latter is true since one may choose y>* = 0 and satisfy the constraints, therefore
due to the optimization, one has

1 —
i(EOTAEOYZ* y?gt) - (E(%FEOTI' la y(ii‘t) <0,

opt?



6 ANA H. IONTCHEVA AND PANAYOT S. VASSILEVSKI

and due to the property (3.1) of M,
1
(010 = JA0MG 2 g i) 0.

That is, the above algorithm provides a monotone scheme.

We mention at the end that one can devise a number of algorithms by choosing
subspaces Vi C V and varying the decompositions V, = Vg* +VE. In our application
V* will be coarse subspaces of V and V& and V§ will correspond to splittings of
the degrees of freedom of V* into dofs on ¥, and interior dofs. In general M, will
correspond to Gauss—Seidel sweeps over the interior dofs, whereas the optimization
for the corresponding y** will be based either on the Projected Gauss—Seidel or on
the Dostal’s algorithm.

4. COARSENING AWAY FROM THE CONTACT BOUNDARY

We generate coarse spaces Vi k =0,...,¢, where V? = V is the original fine—grid
space by element agglomeration. Here we use the fact that the problem under consid-
eration comes from a finite element discretization. Hence, one has access to elements
and their topology (on the fine grid). Agglomeration algorithms were proposed in [6].
They utilize certain element topological relations and create the same relations on
coarse levels recursively. Details can be found in [10]. Here we use a modification of
the agglomeration algorithm in a way that degrees of freedom associated with ¥ are
not coarsened. The original agglomeration algorithm from [6] allowed for barriers,
that is, some faces of elements are labeled as unacceptable and the elements that
share such faces are kept on coarse levels (without being agglomerated with other
elements). A principal step of the thus modified algorithm is as follows: The faces
of elements that are on the X are labeled as unacceptable. Then one labels all ele-
ments that touch such faces. Finally the faces of all such labeled elements are labeled
as unacceptable. Thus at least one layer of elements near the contact boundary Yo
are kept on the initial coarse level. On the next coarsening levels, one increases the
number of unacceptable faces by adding the faces one more layer of (current coarse)
elements on the list of unacceptable faces. The resulting agglomerated elements are
shown on Fig. 4.1-4.3. The second part of the coarsening is to choose the coarse
degrees of freedom (dofs). In this paper we have selected the vertices of the agglom-
erated elements as coarse dofs. The interpolation matrix P, = I}, is defined by
the AMGe principle in the form used in [6]. It requires element matrices on a given
discretization level and creates element matrices on the next coarse level. Then the
coarse operator is defined variationally, that is, Agy; = Pl APy.

The main reason for this kind of coarsening is that if a fine—grid vector v € vy
satisfies the constraints, its (pointwise) restriction V|, .. 1oqes 2150 satisfies the con-
straints, since the elements near the contact boundary have not been changed.

5. ALGORITHM

Here we present our FAS cycle. It is based on a smoothing procedure — the projected
Gauss—Seidel algorithm and on a coarse grid solver — based on Dostal’s algorithm
presented earlier.
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VYo

FIGURE 4.1. Level 0 and Level 1 of the agglomeration.

b d

FIGURE 4.2. Level 2 and Level 3 of the agglomeration.

b

FIGURE 4.3. Level 4 and Level 5 of the agglomeration.

| | Level 0 | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |

Dofs 5000 1500 614 398 332 326

Elements 2401 674 242 135 106 103

Dofs on ' 100 100 100 100 100 100
TABLE 1. Agglomeration information.

Algorithm 5.1. FAS MULTIGRID CYCLE:

uZH—l = FAS (k’ u;cn7 Aka bk) vy, VZ)
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PRESMOOTHING - apply v; times Projected Gauss—Seidel.
ﬁzn = GS"I (ll;cn, Ak, bk)
COARSE-GRID CORRECTION, (CGC)
e Take the restriction of W}’ on the coarse mesh, Uy, = U} |coarsenodes
e Apply the restriction operator to the right-hand side by, = I',;ku
if K +1 = ¢ — apply Dostal’s algorithm w}", , = Dostal (u}’,;, Axi1, bry1)
if £k +1 < ¢, then perform recursion, that is, one computes
Wiy = FAS (k+1, w'y g, Aggr, by, v, vy)

e Compute the correction vi, | = wi; — Uy,

e Interpolate the correction vi* = I}  vi*
. . t
e Compute the corrected approximation u;cn’af er G — g 4 v

k
POSTSMOOTHING— apply v, times Projected Gauss—Seidel.

m+1 _ 1% m,after CGC
uk —GSZ(uk ,Ak,bk)

Based on the discussion in Section 3, it is clear that the above FAS algorithm
provides a monotone algorithm. Its practically mesh-independent convergence is
illustrated in the next section.

6. NUMERICAL EXPERIMENTS FOR SIGNORINI'S PROBLEM

6.1. Signorini’s problem. We consider the so—called Signorini’s problem, which
models a linearly elastic body, deformed due to volume and surface forces, which
should not penetrate a rigid frictionless foundation.

Find the displacement field u such that:
—oyg(u)=fi in Q

u; =0 on I'p

O'Z'j(ll)nj = ti on FF

or,(uy=0 on ¢
op(u) <0 on T¢
U, — g <0 on I'c
ou()(tn —9) =0 on To

QCcRVN : N=23,4,5,kl=1,...,N.

g: initial gap between the body and the foundation.

f: body forces.

t: surface tractions applied to a portion of the body surface I'g. .

I'p: a portion of the boundary along which the body is fixed.

['c: candidate contact surface (the actual surface on which the body comes in

contact is not known in advance but is contained in the candidate contact
surface).
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o: stress vector 0;;(u) = Ejjkuk, - Hooke’s law, E;jy - elasticities characterizing
the material, E;j; € L®(S2).

or;: tangential component of the stress vector.

o,t normal component of the stress vector.

The finite element discretization of the weak form of the Signorini’s problem can
be equivalently formulated as the following constrained minimization problem :

J(v) = 3v'Av —v'b — min, veK,
K= {V e RV-P | n;.0; < gi, 1€ Ec}|

), consists of simplex elements, over which each component of the displacement is
approximated by linear polynomials.

P - total number of nodal points in €. N - dimension of the domain.

A - symmetric positive definite matrix.

n - unit length outward normal on I'c.

g; - the length of a vector beginning at the node corresponding to degree of freedom
i with direction parallel to the normal vector at that node, ending at the crossing point
with the rigid foundation.

Yc -the set of indices of all degrees of freedom on I'c.

We will assume that all normal vectors n’, # € X are equal to a coordinate unit
vector. This can be achieved by appropriate transformation (change of variables) at
the nodes on Y of the unknown displacement vector.

The algorithm given above has been implemented in a C+-+ code and have been
applied to a Signorini’s problem in 2-d with Q = (0,4)?, I'p = {1} x [0,4], I'x =
{4} x [0,4]J[0,4] x {4}, T = [0,4] x {1}, with body force f = (0, —1) , surface
traction t = 0, initial gap g = 2, Lame constants A = 11.3, u = 8.1. The continuous
problem is discretized by bilinear finite elements on quadrilaterals. In each FAS
iteration we apply 4 pre- and 4 postsmoothing steps of Projected Gauss—Seidel and
Dostal’s algorithm on the coarsest level. The algorithm terminates the iterations when
% < 107°. The numerical results are shown on Table 2. One can clearly see
the almost mesh—independent number of FAS iterations. We finally mention that the
cost of the coarse—grid algorithm is typically O(]|X.| x (number of itertions)), that is,
proportional to the number of degrees of on the contact boundary times the number of
iterations used in the Dostal’s algorithm. The latter can be bounded by the condition
number of the respective matrix involved. In our model case the it is of order A 1.
That is overall, the cost is bounded by the total number of degrees of freedom (on
the fine mesh).
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